Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(7): e28941, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38617937

ABSTRACT

Objectives: Different SARS-CoV-2 variants can differentially affect the prevalence of Post Covid-19 Condition (PCC). This prospective study assesses prevalence and severity of symptoms three months after an Omicron infection, compared to Delta, test-negative and population controls. This study also assesses symptomology after reinfection and breakthrough infections. Methods: After a positive SARS-CoV-2 test, cases were classified as Omicron or Delta based on ≥ 85% surveillance prevalence. Three months after enrolment, participants indicated point prevalence for 41 symptoms and severity, using validated questionnaires for four symptoms. PCC prevalence was estimated as the difference in prevalence of at least one significantly elevated symptom, identified by permutation test, in cases compared to population controls. Results: At three months follow-up, five symptoms and severe dyspnea were significantly elevated in Omicron cases (n = 4138) compared to test-negative (n = 1672) and population controls (n = 2762). PCC prevalence was 10·4% for Omicron cases and 17·7% for Delta cases (n = 6855). In Omicron cases, severe fatigue and dyspnea were more prevalent in reinfected than primary infected, while severity of symptoms did not significantly differ between cases with a booster or primary vaccination course. Conclusions: Prevalence of PCC is 41% lower after Omicron than Delta at three months. Reinfection seems associated with more severe long-term symptoms compared to first infection.

2.
Environ Sci Technol ; 57(39): 14526-14538, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37732841

ABSTRACT

Bridging applied ecology and ecotoxicology is key to protect ecosystems. These disciplines show a mismatch, especially when evaluating pressures. Contrasting to applied ecology, ecotoxicological impacts are often characterized for whole species assemblages based on Species Sensitivity Distributions (SSDs). SSDs are statistical models describing per chemical across-species sensitivity variation based on laboratory toxicity tests. To assist in the aligning of the disciplines and improve decision-support uses of SSDs, we investigate taxonomic-group-specific SSDs for algae/cyanobacteria/aquatic plants, invertebrates, and vertebrates for 180 chemicals with sufficient test data. We show that splitting improves pollution impact assessments for chemicals with a specific mode of action and, surprisingly, for narcotic chemicals. We provide a framework for splitting SSDs that can be applied to serve in environmental protection, life cycle assessment, and management of freshwater ecosystems. We illustrate that using split SSDs has potentially large implications for the decision-support of SSD-based outputs around the globe.

3.
J Infect Dis ; 227(9): 1059-1067, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36477364

ABSTRACT

BACKGROUND: This prospective study assesses symptoms 3 months after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection compared to test-negative and population controls, and the effect of vaccination prior to infection. METHODS: Participants enrolled after a positive (cases) or negative (test-negative controls) SARS-CoV-2 test, or after invitation from the general population (population controls). After 3 months, participants indicated presence of 41 symptoms and severity of 4 symptoms. Permutation tests were used to select symptoms significantly elevated in cases compared to controls and to compare symptoms between cases that were vaccinated or unvaccinated prior to infection. RESULTS: In total, 9166 cases, 1698 symptomatic but test-negative controls, and 3708 population controls enrolled. At 3 months, 13 symptoms, and severity of fatigue, cognitive impairment, and dyspnea were significantly elevated incases compared to controls. Of cases, 48.5% reported ≥1 significantly elevated symptom compared to 29.8% of test-negative controls and 26.0% of population controls. Effect of vaccination could be determined for cases aged <65 years, and was significantly protective for loss of smell and taste but not for other symptoms. DISCUSSION: Three months after SARS-CoV-2 infection, almost half of cases report symptoms, which was higher than background prevalence and test-negative prevalence. Vaccination prior to infection was protective against loss of smell and taste in cases aged <65 years.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Netherlands/epidemiology , COVID-19/epidemiology , Anosmia , Population Control , Prevalence , Prospective Studies
4.
Environ Toxicol Chem ; 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36484757

ABSTRACT

How can data on the occurrence of pharmaceuticals and personal care products (PPCPs) in the environment and the quality of ecosystems exposed to PPCPs be used to determine whether current regulatory risk assessment schemes are effective? This is one of 20 "big questions" concerning PPCPs in the environment posed in a landmark review paper in 2012. Ten years later, we review the developments around this question, focusing on the first P in PPCPs, that is, pharmaceuticals, or more specifically the active ingredients included in them (active pharmaceutical ingredients, APIs). We illustrate how extensive data on both the occurrence of APIs and the ecotoxicological sensitivity of aquatic species to them can be used in a retrospective risk assessment. In the Netherlands, current regulatory risk assessment schemes offer insufficient protection against direct ecotoxicological effects from APIs: the toxic pressure exerted by the 39 APIs included in our study exceeds the policy-related protective threshold of 0.05 (the "95%-protection level") in at least 13% of sampled surface waters. In general, anti-inflammatory and antirheumatic products (e.g., diclofenac, ibuprofen) contributed most to the overall toxic pressure, followed by sex hormones and modulators of the genital system (e.g., ethinylestradiol) and psychoanaleptics (e.g., caffeine). We formulated three open questions for future research. The first relates to improving the availability and accessibility of good-quality ecotoxicity data on pharmaceuticals for the global scientific, regulatory, and general public. The second relates to the adaptation of regulatory risk assessment frameworks for developing regions of the world. The third relates to the integration of effect-based and ecological approaches into regulatory risk assessment practice. Environ Toxicol Chem 2023;00:1-12. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

5.
Environ Int ; 164: 107234, 2022 06.
Article in English | MEDLINE | ID: mdl-35483182

ABSTRACT

In this study, 56 effluent samples from 52 European wastewater treatment plants (WWTPs) were investigated for the occurrence of 499 emerging chemicals (ECs) and their associated potential risks to the environment. The two main objectives were (i) to extend our knowledge on chemicals occurring in treated wastewater, and (ii) to identify and prioritize compounds of concern based on three different risk assessment approaches for the identification of consensus mixture risk drivers of concern. Approaches include (i) PNEC and EQS-based regulatory risk quotients (RQs), (ii) species sensitivity distribution (SSD)-based hazard units (HUs) and (iii) toxic units (TUs) for three biological quality elements (BQEs) algae, crustacean, and fish. For this purpose, solid-phase extracts were analysed with wide-scope chemical target screening via liquid chromatography high-resolution mass spectrometry (LC-HRMS), resulting in 366 detected compounds, with concentrations ranging from < 1 ng/L to > 100 µg/L. The detected chemicals were categorized with respect to critical information relevant for risk assessment and management prioritization including: (1) frequency of occurrence, (2) measured concentrations, (3) use groups, (4) persistence & bioaccumulation, and (5) modes of action. A comprehensive assessment using RQ, HU and TU indicated exceedance of risk thresholds for the majority of effluents with RQ being the most sensitive metric. In total, 299 out of the 366 compounds were identified as mixture risk contributors in one of the approaches, while 32 chemicals were established as consensus mixture risk contributors of high concern, including a high percentage (66%) of pesticides and biocides. For samples which have passed an advanced treatment using ozonation or activated carbon (AC), consistently much lower risks were estimated.


Subject(s)
Pesticides , Water Pollutants, Chemical , Water Purification , Animals , Environmental Monitoring , Pesticides/analysis , Risk Assessment , Waste Disposal, Fluid , Wastewater/chemistry , Water Pollutants, Chemical/analysis
6.
Sci Total Environ ; 822: 153385, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35090913

ABSTRACT

Current regulatory chemical safety assessments do not acknowledge that ambient exposures are to multiple chemicals at the same time. As a result, potentially harmful exposures to unintentional mixtures may occur, leading to potential insufficient protection of the environment. The present study describes cumulative environmental risk assessment results for European fresh water ecosystems, based on the NORMAN chemical surface water monitoring database (1998-2016). It aims to characterize the magnitude of the mixture problem and the relative contribution of chemicals to the mixture risk, and evaluates how cumulative risks reduce when the acceptable risk per single chemical is fractionally lowered. Available monitoring data were curated and aggregated to 26,631 place-time combinations with at least two chemicals, of which 376 place-time combinations had at least 25 chemicals identified above the Limit of Detection. Various risk metrics were based on measured environmental concentrations (MECs). Mixture risk characterization ratio's (ΣRCRs) ≥ 1 were found for 39% of the place-time combinations, with few chemicals dominating the ΣRCR. Analyses of mixture toxic pressures, expressed as multi-substance Potentially Affected Fractions of species based on No Observed Effect Concentrations (msPAFNOEC), showed similar outcomes. Small fractional reductions of the ambient chemical concentrations give a steep increase of the percentage of sufficiently protected water bodies (i.e. ΣRCR < 1 and msPAFNOEC < 5%). Scientific and regulatory aspects of these results are discussed, especially with reference to the representativeness of the monitoring data for characterizing ambient mixtures, the robustness of the findings, and the possible regulatory implementation of the concept of a Mixture Allocation Factor (MAF) for prospective chemicals risk management. Although the monitoring data do not represent the full spectrum of ambient mixture exposures in Europe, results show the need for adapting policies to reach European Union goals for a toxic-free environment and underpin the utility and possible magnitude of a MAF.


Subject(s)
Ecosystem , Water Pollutants, Chemical , Environmental Monitoring/methods , Fresh Water , Prospective Studies , Risk Assessment/methods , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...